Downloaded 12/25/12 to 152.3.102.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. COMPUT. © 1988 Society for Industrial and Applied Mathematics
Vol. 17, No. 6, December 1988 012

ON FINDING LOWEST COMMON ANCESTORS:
SIMPLIFICATION AND PARALLELIZATION*

BARUCH SCHIEBERY AND UZI VISHKINT#

Abstract. We consider the following problem. Suppose a rooted tree T is available for preprocessing.
Answer on-line queries requesting the lowest common ancestor for any pair of vertices in T. We present a
linear time and space preprocessing algorithm that enables us to answer each query in O(1) time, as in
Harel and Tarjan [SIAM J. Comput., 13 (1984), pp. 338-355]. Our algorithm has the advantage of being
simple and easily parallelizable. The resulting parallel preprocessing algorithm runs in logarithmic time
using an optimal number of processors on an EREW PRAM. Each query is then answered in O(1) time
using a single processor.

Key words. parallel algorithms, tree algorithms, lowest common ancestors

AMS(MOS) subject classifications. 05C05, 68Q10, 68Q20, 68R10

1. Introduction. We consider the following problem. Given a rooted tree T(V, E)
for preprocessing, answer on-line LCA queries of the form, “Which vertex is the Lowest
Common Ancestor (LCA) of x and y?” for any pair of vertices x, y in T. (Let us
denote such a query LCA (x, y).) We present a preprocessing algorithm that runs in
linear time and linear space on the serial RAM model. (For the definition of a random
access machine (RAM) model see, e.g., [1].) Given this preprocessing, we show how
to process each such LCA query in constant time.

We also consider parallelization of our algorithm. The model of parallel computa-
tion used is the exclusive-read exclusive-write (EREW) parallel random access machine
(PRAM). A PRAM employs p synchronous processors all having access to a common
memory. An EREW PRAM does not allow simultaneous access by more than one
processor to the same memory location for either read or write purposes. See [11] for
a survey of results concerning PRAMs.

Let Seq (n) be the fastest known worst-case running time of a sequential algorithm,
where n is the length of the input for the problem at hand. A parallel algorithm that
runs in O(Seq (n)/p) time using p processors is said to have optimal speedup or, more
simply, to be optimal. A primary goal in parallel computation is to design optimal
algorithms that also run as fast as possible.

Our preprocessing algorithm is easily parallelized to obtain an optimal parallel
preprocessing algorithm that runs in O(log n) time using n/log n processors on an
EREW PRAM, where n is the number of vertices in T. Parallelizing the query processing
is straightforward, provided read conflicts are allowed: k queries can be processed in
O(1) time using k processors.

* Received by the editors March 3, 1987; accepted for publication (in revised form) February 22, 1988.
This research was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under contract DE-AC02-76ER03077.

T Department of Computer Science, School of Mathematical Sciences, Tel Aviv University, Tel Aviv,
Israel 69978. Present address, T. J. Watson Research Center, IBM Research Division, Yorktown Heights,
New York 10598.

f Department of Computer Science, Courant Institute of Mathematical Sciences, New York University,
New York, New York 10012. The research of this author was supported by National Science Foundation
grant NSF-CCR-8615337, Office of Naval Research grant N00014-85-K-0046 and the Foundation for
Research in Electronics, Computers and Communication, administered by the Israeli Academy of Sciences
and Humanities.

1253

Downloaded 12/25/12 to 152.3.102.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1254 B. SCHIEBER AND U. VISHKIN

In their extensive paper [5], Harel and Tarjan gave a serial algorithm for the same
problem. The performance of their algorithm is the same as ours. However, our
algorithm has two advantages: (1) It is considerably simpler in both the preprocessing
stage and the query processing and (2) It leads to a simple parallel algorithm. Below,
we discuss similarities and differences with respect to [5]. Similarities: Both algorithms
use two basic observations: (1) It is possible to answer LCA queries in simple paths
in constant time and (2) It is possible to answer LCA queries in complete binary trees
in constant time. Both algorithms pack information regarding several vertices into a
single O(log n) bits number. Differences: The subtler part of both algorithms is to
show how to use the above two observations for answering an LCA query. In this part,
our approach is completely different. In the preprocessing stage we compute a mapping
from the vertices of the input tree T to the vertices of a complete binary B. The mapping
has two properties: (i) All the vertices of T mapped into the same vertex in B form
a path and (ii) For each vertex v in T, the descendants of v are mapped into descendants
of the image of v in B. This mapping, together with some additional information,
enables us to answer an LCA query in constant time. In [5], on the other hand, the
vertices of the input tree T are mapped to the vertices of an arbitrary tree of logarithmic
height, called the compressed tree. The preprocessing consists of a quite involved
manipulation of this compressed tree. This manipulation includes partitioning the
compressed tree into three plies and preprocessing each ply separately and also
embedding the compressed tree in a complete binary tree.

Consider a dynamic LCA problem which, interspersed with the LCA queries, are
on-line deletions and insertions of edges. Reference [5] also gives algorithms for some
cases of this problem. We do not consider this problem in the present paper.

Our parallel algorithm improves on the following results. Tsin [9] gave two parallel
algorithms for the LCA problem. In his first algorithm both the preprocessing stage
and the query processing take logarithmic time with a linear number of processors. In
his second algorithm the preprocessing stage takes O(log n) time using n” processors
and processing a query takes O(1) time using a single processor. Vishkin [12] includes
a parallel algorithm for the LCA problem. The processing of an LCA query takes
logarithmic time (as in the first algorithm of Tsin). The preprocessing stage takes
O(log n) time using n/log n processors (as in the present paper).

Observe that using our parallel preprocessing algorithm we can process k off-line
LCA queries in O(log n) time using (n+ k)/log n processors, provided read conflicts
are allowed. This affects the performance of parallel algorithms for three problems:
(1) Given an undirected graph, orient its edges so that the resulting digraph is strongly
connected (if such orientation is possible) [12]. (2) Computing an open-ear decomposi-
tion and st-numbering of a biconnected graph [8]. Using the new parallel connectivity
and list-ranking algorithms of [3], it has become possible to solve each of these problems
in logarithmic time using an optimal number of processors only when m = n log n,
where n is the number of vertices and m is the number of edges in the input graph.
Our oft-line LCA computation enables us to extend the range of optimal speedup
logarithmic time parallel algorithms for these problems to sparser graphs, where
m = n log* n as in the above connectivity algorithm. (3) Approximate string matching
[6]. The new parallel suffix tree construction of [7] together with the present parallel
LCA computation lead to a considerable simplification of the parallel algorithm of
[6]. This simplification has already been described in [2].

The paper is organized as follows. Section 2 gives a high-level description of the
algorithm. Section 3 describes the preprocessing stage. In § 4 we show how to process
LCA queries in T using the outcome of the preprocessing stage. Section 5 presents
parallelization of our preprocessing stage.

Downloaded 12/25/12 to 152.3.102.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

LOWEST COMMON ANCESTORS 1255

2. High-level description. The entire algorithm is based on the following two
observations (made also in [5]): (1) Had our input tree been a simple path, it would
have been possible to preprocess it (by way of computing the distance of each vertex
from the root, as explained below) and later answer each LCA query in constant time.
(2) Had our input tree been a complete binary tree, it would have been possible to
preprocess it (by way of computing its inorder number, as explained below) and later
to answer each LCA query in constant time.

The preprocessing stage assigns a number INLABEL (v) to each vertex v in T.
Motivated by observation (1), these numbers satisfy the following Path-Partition
Property: The INLABEL numbers partition the tree T into paths, called INLABEL
paths. Each INLABEL path consists of the vertices that have the same INLABEL
number.

Let B be the smallest complete binary tree having at least n vertices. Our description
identifies each vertex in B by its inorder number. Motivated by observation (2), the
INLABEL numbers also satisfy the following Descendance-Preservation Property: The
INLABEL numbers map each vertex v in T into the vertex INLABEL (v) in B, such
that the descendants of v are mapped into descendants of INLABEL (v) in B (v is
considered both a descendant and an ancestor of itself).

Consider a vertex v in T. By the Descendance-Preservation Property all the
ancestors of v are mapped into ancestors of INLABEL (v). This implies that there are
at most log n distinct numbers among the INLABEL numbers of all the ancestors of
v. Later, we show how to record all these INLABEL numbers using a single string of
log n bits. In the preprocessing stage we compute this string, for each vertex v in T,
into ASCENDANT (v).

In the preprocessing stage we also compute the table HEAD. It contains the
highest vertex in every INLABEL path.

Section 4 describes how to process a query LCA (x, y) for any pair of vertices x, y
in T. The processing breaks into two cases. The simpler case is where x and y belong
to the same INLABEL path. In the preprocessing stage we compute for each vertex
v in T its distance from the root into LEVEL (v). So, LCA (x, y) is simply the vertex
among x and y that is closer to the root. The more complicated case is where
INLABEL (x) # INLABEL (y). We proceed in four steps. In the first step, we find the
LCA of INLABEL (x) and INLABEL (y) in the complete binary tree B, denoted by
b. Let z=LCA (x, y) in T. In the second step, we find INLABEL (z). INLABEL (z)
is the lowest ancestor of b in B that is the INLABEL number of a common ancestor
of x and y in T. For this, we use information provided by ASCENDANT (x) and
ASCENDANT (y). In the third and fourth steps we find z in the INLABEL path
defined by INLABEL (z). In the third step, we find the lowest ancestor of x, denoted
%, and the lowest ancestor of y, denoted 7, in the path defined by INLABEL (z) in T.
This is done in an indirect fashion. Consider the path in B from INLABEL (z) to
INLABEL (x). We derive from ASCENDANT (x) the first INLABEL number (i.e.,
vertex of B) of an ancestor of x in this path. Table HEAD gives the highest ancestor
of x in T having this INLABEL number. Finally, X is the father in T of this ancestor.
We find j similarly. In the fourth step we find z, which is simply the vertex among X
and j that is closer to the root.

3. The preprocessing stage. The outcome of the preprocessing stage consists of
labels that are assigned to the vertices of T and a look-up table, called HEAD. The
label of each vertex v in T consists of three numbers: INLABEL (v), ASCEN-
DANT (v), and LEVEL (v).

Downloaded 12/25/12 to 152.3.102.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1256 B. SCHIEBER AND U. VISHKIN

We start with computing INLABEL (v), for each vertex v in T. This is done in
two steps. After a discussion of these two steps we show how to implement them.

Let PREORDER (v) be the serial number of v in preorder traversal of T and
SIZE (v) be the number of vertices in the subtree rooted at v. Definition of preorder
traversal can be found, e.g., in [1, pp. 54-55].

Step 1. Compute PREORDER (v) and SIZE (v).

We note that the PREORDER numbers of the vertices in the subtree rooted at v
range between PREORDER (v) and PREORDER (v)+SIZE (v) —1, and therefore,
the closed interval [PREORDER (v), PREORDER (v)+SIZE (v) —1] is called the
interval of v.

In Step 2 we consider the binary representation of the (integer) numbers in the
interval of v. We remark that throughout this paper we alternately refer to numbers
and to their binary representations. No confusion will arise.

Step 2. Find the (integer) number that has the maximal number of rightmost “0”
bits in the interval of v. This number is assigned to INLABEL (v).

For an example of computations described in this section see Fig. 3.1.

1,0
10000,!10000

13,1
2.1 ,
, ", 10000,I0000
01000,11000 ﬁ 01100,10100
3,2
: 14,2
01000,11600 10000,I0000
43 12,2
00100, 01100,10100
11100 10,3
O 01010,11010 5,3
7,3 10000,10000

0100011000

54

00IOl, ?g,;g
Hiol :
000 10010

9,5

010011100l 19,5

10100, 10100

21,6
20,6 2
10100, I0101,10101
10100

F1G. 3.1. Example. A tree with four numbers: PREORDER, LEVEL, INLABEL, and ASCENDANT
at each vertex. (The last two numbers are given in binary representation.)

Downloaded 12/25/12 to 152.3.102.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

LOWEST COMMON ANCESTORS 1257

Discussion. We show that the INLABEL numbers satisfy the two properties
defined in the high-level description of the previous section.

LeMMA 1. The INLABEL numbers satisfy the Path-Partition Property.

Proof. Observe that the intervals of the sons of v must be pairwise disjoint.
Therefore, INLABEL (v) belongs to the interval of at most one son of v. Denote such
a son by u. By the selection of the INLABEL numbers (Step 2), INLABEL (u) =
INLABEL (v) (if u exists), and for any other son w of v, INLABEL (w)#
INLABEL (v). This implies the Path-Partition Property of the INLABEL numbers. [

LeMMA 2. The INLABEL numbers satisfy the Descendance-Preservation Property.

Proof. Let d be any descendant of v in T. We show that INLABEL (d) is a
descendant of INLABEL (v) in the complete binary tree B. (Recall that our description
identifies each vertex in B by its inorder number, thus proving the lemma.) Consider
any two vertices b and ¢ in B. We first give a necessary and sufficient condition for ¢
to be a descendant of b in B and then show that INLABEL (d) and INLABEL (v)
satisfy this condition. Let I = |log n|' and i be the number of rightmost ““0” bits in b.
That is, b consists of | —i leftmost bits followed by a single “1”” and i ““0”’s.

CLAIM. A vertex c is a descendent of b if and only if (1) the I —i leftmost bits of ¢
are the same as the 1— i leftmost bits of b, and (2) the number of rightmost ““0” bits in
c is at most i.

Proof. Let b, and by be the left and right sons of b, respectively. It is not difficult
to see the following: (i) b, consists of the I —i leftmost bits of b followed by a single
“0, a single “1”, and i—1 “0”s; and (ii) bg consists of the /—i leftmost bits of b
followed by two “1”s and i —1 “0”’s. These facts readily imply both directions of our
claim.

For an example of a complete binary tree and its inorder numbering see Fig. 3.2.

16
A 10000
8 24
OIOOO ® 11000
4 12 20 28
OOIOO OIIOO IOIOO e 1100

2 6 10 14

8 { 22N\ 264 30
000105 00110 01010% oi1io

2100107 1010 100X 1105

ONONONONONONOINONONONONOINONOINONO
| 5 9 13 g 2 25 29
0000l OO0I01 OI00I Qllol 10001 10101 11001 110!
3 7] 15 19 23 27 3l
oooll ool ool ol 1001 1ol Hoi T

F1G. 3.2. Example. Inorder numbering of the complete binary tree with 31 vertices. (The numbers are given
also in binary representation.)

! The base of all logarithms in this paper is two.

Downloaded 12/25/12 to 152.3.102.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1258 B. SCHIEBER AND U. VISHKIN

We return to the proof of Lemma 2. Let i be the number of rightmost “0”’ bits in
INLABEL (v). Since INLABEL (d) belongs to the interval of v and INLABEL (v)
has the maximal number of rightmost ““0”* bits in this interval, the number of rightmost
“0” bits in INLABEL (d) is at most i. The [—i leftmost bits are the same for all
numbers in the interval. In particular, the [—i leftmost bits in INLABEL (d) are the
same as the [—i leftmost bits in INLABEL (v). This implies that INLABEL (d) is the
descendant of INLABEL (v) in B. Lemma 2 follows. 0O

Implementation. Step (1) is implemented in linear time and linear space, using
preorder traversal of T. Given PREORDER (v) and SIZE (v), for each vertex v in T,
Step (2) is implemented in constant time per vertex in two substeps.

Step 2.1. Compute [log [(PREORDER (v)—1) xor (PREORDER (v) +
SIZE (v)—1)]] into i Let us explain this. The bitwise logical exclusive OR (denoted
xor) of PREORDER (v)—1 and PREORDER (v)+SIZE (v)—1 assigns “1” to each
bit in which PREORDER (v) —1 and PREORDER (v)+SIZE (v) — 1 differ. The floor
of the (base two) logarithm gives the index of the leftmost bit of difference (counting
from the rightmost bit whose index is zero). Note that the bit-indexed i must be “0”
in PREORDER (v)—1 and “1” in PREORDER (v)+SIZE (v) —1, since the second
number is larger.

Step 2.2 shows how to “‘compose” INLABEL (v). For this, we need two observa-
tions. (1) The I —i+1 leftmost bits of INLABEL (v) are the same as the I —i+ 1 leftmost
ous in PREORDER (v)+SIZE (v)—1. (2) The i other bits in INLABEL (v) are “0”’s.

Step 2.2. Compute 2'|(PREORDER (v)+SIZE (v)—1)/2'| into INLABEL (v).
This assigns the I —i+1 leftmost bits in PREORDER (v)+SIZE (v)—1to the [—i+1
leftmost bits in INLABEL (v) and “0’’s to the other bits of INLABEL (v).

Remark. The above computation is based on PREORDER numbering of the
vertices of T. This numbering has the property that the numbers assigned to the subtree
rooted at any vertex of T provide a consecutive series of integers. In fact, any alternative
numbering having this property (e.g., POSTORDER, INORDER) will produce
INLABEIT. numbers that will be suitable for our preprocessing stage.

We proceed to the computation of the ASCENDANT numbers. The general idea
is that for each vertex v, the single number ASCENDANT (v) will record the INLABEL
numbers of all the ancestors of v in T. We observe that, from the viewpoint of vertex
v the INLABEL number of each of its ancestors can be fully specified by the index
of its rightmost ““1”. This is so because the bits that are to the left of this 1’ are the
same as their respective bits in INLABEL (v). Like the INLABEL numbers, ASCEN-
DANT (v) is also an (/+1)-bit number. Denote the binary representation of ASCEN-
DANT (v) by the binary sequence A;(v), - -+, Ay(v). We set A;(v) =1 only if i is the
index of a rightmost ““1”” in the INLABEL number of an ancestor of v in T. To compute
the ASCENDANT numbers, we scan the vertices of T from its root r down to its
leaves (use, for instance, Breadth-First Search). We start with ASCENDANT (r) =2".
Consider aninternal vertex v in T and let F(v) be the fatherof vin T. If INLABEL (v) =
INLABEL (F(v)) then we assign ASCENDANT (F(v)) to ASCENDANT (v); other-
wise, we assign ASCENDANT (F(v))+2' to ASCENDANT (v), where i is the index
of the rightmost “1” in INLABEL (v). It can be easily verified that i is given by
log (INLABEL (v) —[INLABEL (v) and (INLABEL (v)—1)]), where and denotes bit-
wise logical AND.

Recall that LEVEL (v), for each vertex v in T, is the distance, counting edges, of
the path from v to the root r. Computation of the LEVEL numbers is straightforward
and can be done using, e.g., Breadth-First Search.

Downloaded 12/25/12 to 152.3.102.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

LOWEST COMMON ANCESTORS 1259

Recall that Fig. 3.1 gives an example of the labels.

We conclude by describing how to compute the Table HEAD. HEAD (k) contains
the vertex closest to the root in the path consisting of all vertices whose INLABEL
number is k. HEAD (k) is sometimes called the head of the INLABEL path k.
Computation of the table HEAD is trivial. For each vertex v, such that INLABEL (v) #
INLABEL (F(v)) we assign v to HEAD (INLABEL (v)). This, again, takes linear time
and linear space.

A general implementation remark. The time bounds of both the preprocessing stage
and the query processing depend on the ability to perform multiplication, division,
powers-of-two computation, bitwise AND, base-two discrete logarithm, and bitwise
exclusive OR in constant time. If these operations are not part of the machine’s
repertoire, look-up tables for each missing operation are prepared in linear time and
linear space as part of the preprocessing stage. These tables will be used to perform
the missing operations in O(1) operations in the repertoire.

4. Processing LCA queries. In this section we show how to answer LCA queries
using the outcome of the preprocessing stage.

Consider a query LCA (x, y), for any pair of vertices x, y in T. (To illustrate the
presentation the reader is referred to Fig. 3.1.) There are two cases.

Case A. INLABEL (x) =INLABEL (y). It must be that x and y are in the same
INLABEL path. We conclude that LCA (x, y) is x if LEVEL (x)=LEVEL (y) and y
otherwise.

Case B. INLABEL (x)# INLABEL (y). Let z be LCA (x, y). We find z in four
steps:

Step 1. Find b, the LCA of INLABEL (x) and INLABEL (y) in the complete
binary tree B, as follows. Let i be the index of the rightmost “1”” in b. Since b is a
common ancestor of INLABEL (x) and INLABEL (y) in B, i must satisfy the following
two conditions. (1) The [—i leftmost bits in INLABEL (x) and in INLABEL (y) are
the same as these bits in b. (2) The index of the rightmost “1”” in INLABEL (x) and
in INLABEL (y) is at most i. Since b is the lowest common ancestor of INLABEL (x)
and INLABEL (y) in B, i is the minimum index satisfying both conditions. We
distinguish three cases.

Case (1). INLABEL (x) is an ancestor of INLABEL (y). Let i, be the index of
the rightmost “1” in INLABEL (x). Note that in this case the I —i; leftmost bits in
INLABEL (x) and in INLABEL (y) are the same and that the index of the rightmost
“1” in INLABEL (y) <i,. Hence, i equals i,.

Case (2). INLABEL (y) is an ancestor of INLABEL (x). Similar to Case (1), i
is the index of the rightmost “1” in INLABEL (y).

Case (3). Not cases (1) and (2). In this case i is the minimum index such that
the [—i leftmost bits in INLABEL (x) and INLABEL (y) are the same.

We can deal with all three cases at once by simply taking i to be the maximum
among the following: the index of the leftmost bit in which INLABEL (x) and
INLABEL (y) differ; the index of the rightmost “1” in INLABEL (x); and the index
of the rightmost “1” in INLABEL (y). b consists of the I—i leftmost bits in
INLABEL (x) (or INLABEL (y)) followed by a single “1” and i “0”’s.

In Step 2 we find INLABEL (z) (where z is LCA (x, y)). The Descendance-
Preservation Property of the INLABEL numbers implies that INLABEL (z) is a
common ancestor of INLABEL (x) and INLABEL (y). Notice that INLABEL (z) is
not necessarily b, the lowest common ancestor of INLABEL (x) and INLABEL (y).
This is so because the vertices in T mapped into b are not necessarily ancestors of x

Downloaded 12/25/12 to 152.3.102.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1260 B. SCHIEBER AND U. VISHKIN

or y. However, it is not difficult to see that INLABEL (z) is the lowest ancestor of b
in B that is the INLABEL number of an ancestor of both x and y in T.

Step 2. Find INLABEL (z). For this we find the index of the rightmost ““1” in
INLABEL (z), denoted by j. Since z is a common ancestor of x and y in T, 4;(x)=1
and A;(y) = 1. Since INLABEL (z) is the lowest ancestor of b that is a common ancestor
of x and y, the index j must be the index of the rightmost “1” in A/(x), -, Ai(x)
and A,(y), * - -, Ai(y). INLABEL (z) consists of the | —j leftmost bits of INLABEL (x)
(or INLABEL (y)) followed by a single “1”” and j “0’s.

In the next steps we find z, the lowest vertex in the path defined by INLABEL (z)
that is a common ancestor of x and y in T. For this we find X, the lowest ancestor of
x in the path defined by INLABEL (z) and J, the lowest ancestor of y in this same
path. z is the highest vertex among these two vertices.

Step 3. Find £ and y. We show how to find £ j is found similarly. If
INLABEL (x) =INLABEL (z) then X=x and nothing has to be done. Suppose
INLABEL (x) # INLABEL (z). We set the following intermediate goal, as the main
step toward finding X: Find the son of X that is also an ancestor of x. Denote the
vertex that we search by w and let k be the index of the rightmost “1” in INLABEL (w).
It is not difficult to verify that k is the index of the leftmost “1”” in A;_,(x), ..., Ao(x).
So, we find k. Clearly, INLABEL (w) consists of the / — k leftmost bits of INLABEL (x)
followed by a single “1”” and k ““0”’s. Observe that w is the head of its INLABEL path
(since the INLABEL number of its father X is different from INLABEL (w)). Therefore,
w is HEAD (INLABEL (w)) and our intermediate goal is achieved. Finally, X is the
father of w.

Step 4. LCA(x, y) is £ if LEVEL(X) = LEVEL(}) and j otherwise.

In the rest of this section we give additional implementation details required for
the above processing.

Step 1. To find i, the index of the rightmost “1” in b, we do the following.

Step 1.1. Find i, the index of the rightmost “1”” in INLABEL (x), and
i, the index of the rightmost “1” in INLABEL (y). To find i,
we compute i;:=log (INLABEL (x)—[INLABEL (x) and
(INLABEL (x)—1)]), as in the ASCENDANT numbers compu-
tation of the previous section. i, is found similarly.

Step 1.2. Find i;, the index of the leftmost bit in which INLABEL (x)
and INLABEL (y) differ. To find i; we compute iy:=
|[log [INLABEL (x) xor INLABEL (y)]]. This is similar to Step
2.1 in the INLABEL numbers computation of the previous
section.

i is the maximum among i, i,, and i. Given i, b can be computed similarly

to Step 2.2 in the INLABEL numbers computation.

Step 2. To find j we do the following steps.

Step 2.1. Compute the bitwise logical AND of ASCENDANT (x) and
ASCENDANT (y) into COMMON.

Step 2.2. Compute 2’| COMMON/2'| into COMMON,. COMMON, lists
all the “1”’s in both A,(x), - -, Ai(x) and A;(y), - -, Ai(y).

Step 2.3. j is the index of the rightmost “1”” in COMMON;,. To find j we
compute j:=1log (COMMON,;—-[COMMON; and (COM-
MON; —1)]), as in the ASCENDANT numbers computation of
the previous section.

The implementation of Step 3 uses the same techniques.

5. The parallel preprocessing algorithm. In this section we describe the parallel

version of our preprocessing stage. It runs in O(log n) time using n/log n processors.

Downloaded 12/25/12 to 152.3.102.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

LOWEST COMMON ANCESTORS 1261

We make the following assumption regarding the representation of the input tree T.
Its n—1 edges are given in an array, where the incoming edges of each vertex are
grouped successively. By our definition of the tree T, its edges are directed towards
the root.

Computing the labels in parallel. To compute the labels of the vertices in T we
apply the Euler tour technique for computing tree functions, which was given in [10]
and [12]. We will implement it, however, using the O(log n) time optimal parallel
list-ranking algorithm of [3]. This list-ranking algorithm is designed for an EREW
PRAM. It is based on expander graphs and its O(log n) time bound hides a constant
that is not very small. We note that [4] recently gave an alternative list-ranking algorithm
with the same time and processor efficiencies. This alternative algorithm is designed
for a PRAM that allows simultaneous access to the same memory location for both
read and write purposes (called CRCW PRAM). It is simpler and its O(log n) time
bound requires a small constant.

Below, we first recollect the construction required for the Euler tour technique.
We then show how to use it for computing the labels. The only reason we were forced
to present anew the Euler tour technique is that the computation of the ASCENDANT
numbers has not appeared elswhere.

Step 1. For each edge (v—>u) in T we add its antiparallel edge (u-v). Let H
denote the new graph.

Since the indegree and outdegree of each vertex in H are the same, H has an
Euler path that starts and ends in r. Step 2 computes this path into the vector of
pointers D, where for each edge e of H, D(e) will have the successor edge of e in the
Euler path.

Step 2. For each vertex v of H we do the following: (Let the outgoing edges of
vbe (vV>ug), -, (v=>uy-).) D> 0)= (V= Ugt1)ymoaa), fOr i=0,- -+, d—1. Now
D has an Euler circuit. The “correction” D(u,_, - r) = end-of-list (Where the outdegree
of r is d) gives an Euler path which starts and ends in r.

We show how to use the Euler path in order to find PREORDER (v), PREOR-
DER (v)+SIZE (v)—1, and LEVEL (v) for each vertex v in T.

Step 3. We assign two weights: W, (e) and W,(e) to each edge e in the Euler path
as follows. (1) Wj(e) =1 if e is directed from r (that is, if e is not a tree edge), and
Wi(e) =0 otherwise. (2) W,(e)=1 if e is directed from r, and W,(e) = —1 otherwise.

Step 4. We apply twice an optimal logarithmic time parallel list-ranking algorithm
to find for each e in H its (weighted) distance from the start of the Euler path: The
first application is relative to the weights W, and the result is stored in DISTANCE, (e);
the second application is relative to the weights W, and the result is stored in
DISTANCE, (e). Consider a vertex v # r and let u be its father in 7. PREORDER (v)
is DISTANCE, (u - v)+1, PREORDER (v)+SIZE (v) —1is DISTANCE, (v->u)+1,
and LEVEL (v) is DISTANCE, (u - v). (These claims can be readily verified by the
reader.)

Step 5. Given PREORDER (v) and PREORDER (v)+ SIZE (v) — 1 for each ver-
tex v in T we compute INLABEL (v) in constant time using n processors as in the
serial algorithm.

Next, we show how to use the Euler path in order to find ASCENDANT (v) for
each vertex v in T.

Step 6. We assign a (new) weight W(e) to each edge e in the Euler path as
follows. For each vertex v # r we do the following. Let u be the father of v in T and
let i be the index of the rightmost “1” in INLABEL (v). If INLABEL (v)#
INLABEL (u), we assign W(u~v)=2' and W(v- u)=—2". The weight of all other
edges is set to zero.

Downloaded 12/25/12 to 152.3.102.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1262 B. SCHIEBER AND U. VISHKIN

Step 7. We again apply a parallel list-ranking algorithm to find for each e in H
its (weighted) distance from the start of the Euler path. Consider a vertex v # r and
let u be its father in 7. ASCENDANT (v) is the distance of the edge (u- v) plus 2'.
Clearly, ASCENDANT (r) =2,

We note that, given the labels, the table HEAD can be computed in constant time
using n processors.

Complexity. Each of steps 4 and 7 needs n/log n processors and O(log n) time.
Each of Steps 1, 2, 3, 5, 6 and the computation of HEAD needs n processors and
O(1) time and can be readily simulated by n/log n processors in O(log n) time. Thus,
the parallel preprocessing stage can be done in a total O(log n) time using n/log n
processors.

Acknowledgments. We are grateful to Noga Alon and Yael Maon for stimulating
discussions. We also thank the anonymous referee for drawing our attention to [9].

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] A. AposToLico, C. ILioPOULOS, G. M. LANDAU, B. SCHIEBER, AND U. VISHKIN, Parallel construc-
tion of a suffix tree with applications, Algorithmica Special Issue on Parallel and Distributed
Computing, to appear.

[3] R. CoLE AND U. VISHKIN, Approximate and exact parallel scheduling with applications to list, tree and
graph problems, in Proc. 27th Annual IEEE Symposium on Foundations of Computer Science,
1986, pp. 478-491.

, Faster optimal parallel prefix sums and list ranking, TR 56/86, the Moise and Frida Eskenasy

Institute of Computer Science, Tel Aviv University, Tel Aviv, Israel, 1986.
[5] D. HAREL AND R. E. TARJAN, Fast algorithms for finding nearest common ancestors, SIAM J. Comput.,
13 (1984), pp. 338-355.
[6] G. M. LANDAU AND U. VISHKIN, Introducing efficient parallelism into approximate string matching,
in Proc. 18th Annual ACM Symposium on Theory of Computing, 1986, pp. 220-230.
[7] G. M. LANDAU, B. SCHIEBER, AND U. VISHKIN, Parallel construction of a suffix tree, in Proc. 14th
Internat. Colloquium on Automata Language and Programming, Lecture Notes in Computer
Science 267, Springer-Verlag, Berlin, New York, 1987, pp. 314-325.
[8] Y. MAON, B. SCHIEBER, AND U. VISHKIN, Parallel ear decomposition search (EDS) and st-numbering
in graphs, Theoret. Comput. Sci., 47 (1986), pp. 277-298.
[9] Y. H. TsiN, Finding lowest common ancestors in parallel, IEEE Trans. Comput., 35 (1986), pp. 764-769.
[10] R. E. TARJAN AND U. VISHKIN, An efficient parallel biconnectivity algorithm, SIAM J. Comput., 14
(1985), pp. 862-874.

[11] U. VisHKIN, Synchronous parallel computation—a survey, TR-71, Department of Computer Science,
Courant Institute of Mathematical Sciences, New York University, New York, NY, 1983.

, On efficient parallel strong orientation, Inform. Process. Lett., 20 (1985), pp. 235-240.

(41

[12]

